Cobertura com círculos de raio mínimo

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Santana, Arthur Gabriel de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45134/tde-30032022-172201/
Resumo: Neste trabalho, investigamos o problema de cobrir conjuntos de polígonos convexos usando círculos de mesmo raio mínimo. Utilizamos uma abordagem de otimização não-linear, definindo as restrições de viabilidade como diferenças entre áreas de polígonos curvilineares. Utilizando um particionamento baseado em Diagramas de Voronoi, apresentamos algoritmos para o cálculo exato das funções de restrição, além de suas primeiras derivadas. São expostos também os métodos usados nesse processo para o cálculo de Diagramas de Voronoi, interseções entre poliedros, polígonos e polígonos curvilineares, além do cálculo de áreas e comprimentos de interesse.