Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Getelina, João Carlos de Andrade |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/76/76131/tde-14042016-140707/
|
Resumo: |
This work provides a full description of the critical behavior of the XX spin-1/2 chain under correlated quenched disorder. Previous investigations have shown that the introduction of correlation between couplings in the random XX model gives rise to a novel critical behavior, where the infinite-randomness critical point of the uncorrelated case is replaced by a family of finite-disorder critical points that depends on the disorder strength. Here it is shown that most of the critical exponents of the XX model with correlated randomness are equal to clean (without disorder) chain values and do not depend on disorder strength, except the critical dynamical exponent and the anomalous dimension. The former increases monotonically with disorder strength, whereas the results obtained for the latter are unreliable. Furthermore, the scaling relations between the critical exponents were also tested and it was found that those involving the system dimensionality, namely the hyperscaling and Fisher´s scaling relations, are not respected. Measurements of the Rényi entanglement entropy of the system at criticality have also been performed, and it is shown that the scaling behavior of the correlated-disorder case is similar to the theoretical prediction for the clean chain, displaying the same finite-size correction and a disorder-dependent effective central charge in the leading term of the scaling. Further corrections to the scaling of the entanglement entropy were also investigated, but the results are inconclusive. The model was studied via exact numerical diagonalization of the corresponding Hamiltonian. |