Lógicas probabilísticas com relações de independência: representação de conhecimento e aprendizado de máquina.

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Ochoa Luna, José Eduardo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3152/tde-17082011-090935/
Resumo: A combinação de lógica e probabilidade (lógicas probabilísticas) tem sido um tópico bastante estudado nas últimas décadas. A maioria de propostas para estes formalismos pressupõem que tanto as sentenças lógicas como as probabilidades sejam especificadas por especialistas. Entretanto, a crescente disponibilidade de dados relacionais sugere o uso de técnicas de aprendizado de máquina para produzir sentenças lógicas e estimar probabilidades. Este trabalho apresenta contribuições em termos de representação de conhecimento e aprendizado. Primeiro, uma linguagem lógica probabilística de primeira ordem é proposta. Em seguida, três algoritmos de aprendizado de lógica de descrição probabilística crALC são apresentados: um algoritmo probabilístico com ênfase na indução de sentenças baseada em classificadores Noisy-OR; um algoritmo que foca na indução de inclusões probabilísticas (componente probabilístico de crALC); um algoritmo de natureza probabilística que induz sentenças lógicas ou inclusões probabilísticas. As propostas de aprendizado são avaliadas em termos de acurácia em duas tarefas: no aprendizado de lógicas de descrição e no aprendizado de terminologias probabilísticas em crALC. Adicionalmente, são discutidas aplicações destes algoritmos em processos de recuperação de informação: duas abordagens para extensão semântica de consultas na Web usando ontologias probabilísticas são discutidas.