Análise de modos normais dos movimentos conformacionais em proteínas

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Mendonça, Matheus Rodrigues de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/59/59135/tde-18042016-104716/
Resumo: A caracterização das flutuações dos resíduos da proteína em torno do seu estado nativo é essencial para estudar mudanças conformacionais, interação proteína-proteína e interação proteína-ligante. Tal caracterização pode ser capturada pelo modelo de rede gaussiana (GNM). Este modelo tem sido modificado e novas propostas têm surgido nos últimos anos. Nesta Tese, apresentamos um estudo sobre como melhorar o GNM e exploramos o seu desempenho em predizer os fatores-B experimentais. Modelos de redes elásticas são construídos a partir das coordenadas experimentais dos levando em consideração pares de átomos de C? distantes entre si até um dado raio de corte Rc . Estes modelos descrevem as interações entre os atómos por molas com a mesma constante de força. Desenvolvemos um método baseado em simulações numéricas com um campo de forças simplificado para atribuir pesos a estas constantes de mola. Este método considera o tempo em que dois átomos de C? permanecem conectados na rede durante o desenovelamento parcial, estabelecendo assim uma forma de medir a intensidade de cada ligação. Examinamos dois diferentes campos de forças simplificados e exploramos o cálculo desses pesos a partir do desenovelamento das estruturas nativas. Nós comparamos o seu desempenho na predição dos fatores-B com outros modelos de rede elástica. Avaliamos tal desempenho utilizando o coeficiente de correlação entre os fatores-B preditos e experimentais. Mostramos como o nosso modelo pode descrever melhor os fatores-B