Métodos de apoio a decisão médica para análise em diabetes mellitus gestacional utilizando a probabilidade pragmática na lógica paraconsistente anotada de dois valores para melhor precisão de resposta.

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Souza, Paulo Roberto Schroeder de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3142/tde-11022009-102011/
Resumo: Vários métodos estatísticos aplicados à medicina diagnóstica sofreram, nas últimas décadas, enormes avanços. Grande parte destes métodos está voltada ao problema de classificar indivíduos em grupos, sendo que os testes diagnósticos ligados a técnicas de Inteligência Artificial compõem nossa principal aplicação desse trabalho. Estes testes estatísticos são descritos como métodos teoricamente capazes de indicar a presença ou a ausência de uma determinada doença, com certa chance de erro. A quantificação destas chances de erro que é, basicamente, o objetivo destes métodos tem servido a inúmeras aplicações e nesse trabalho é utilizada como fonte de evidências para os procedimentos de análises estruturados em Lógica Paraconsistente. Como a Lógica Paraconsistente é uma lógica não-clássica que aceita contradição em sua estrutura sem invalidar as conclusões, e utiliza em suas análises valores evidenciais, aplicamos aqui os conceitos fundamentais de um tipo de Lógica Paraconsistente denominada de Lógica Paraconsistente Anotada com anotação de dois valores LPA2v. Através dos procedimentos estatísticos e os fundamentos da LPA2v o presente estudo objetiva descrever a situação em que o teste produz uma resposta que não é descrita simplesmente como positivo ou negativo, mas por um resultado que pode ser expresso por uma variável categórica ordinal ou por uma variável contínua que pode ser considerada como grau de evidência. Esse processo é realizado utilizando uma dedução lógica que usa os conceitos da Probabilidade Pragmática na qual se pode efetuar uma ligação entre a teoria probabilística de Bayes e os métodos de aplicação da Lógica Paraconsistente Anotada com dois valores LPA2v. Dessa junção surgiram neste trabalho algoritmos Paraconsistentes que descrevem esse processo. Denominamos o processo de adaptação da Teoria de Bayes para a Lógica Paraconsistente de ParaBayes. Para demonstrar os procedimentos que utilizam os conceitos fundamentais da LPA2v em dados probabilísticos foram extraídos valores evidenciais de um banco de dados que se refere à submissão de um conjunto de casos, contendo uma série de evidências e o diagnóstico de Diabetes, em uma comunidade de índias PIMA. São utilizadas no banco de dados índias PIMA as técnicas dos métodos estatísticos e de raciocínio probabilístico de Bayes para levantamento de dados que foram interpretados e modelados como Graus de Evidência capazes de serem analisados pelos Algoritmos da LPA2v. Neste estudo verifica-se que a extração dos Graus de Evidência não invalida as técnicas estatísticas já estabelecidas, mas confere através da LPA2v novas formas de interpretação baseadas nos resultados e produzindo meios que facilitam o tratamento dos dados por ferramentas computacionais elevando o grau de confiança dos diagnósticos. Uma das observações importantes é que o método LPA2v/Bayes proposto utilizado para extrair evidências é capaz de evitar possíveis distorções no formato da curva que possam advir da seleção inadequada de casos de teste. Os resultados obtidos sugerem que em situações nas quais se tenha uma grande quantidade de casos em que as incertezas exijam métodos estatísticos para formar diagnóstico, esta seja uma boa técnica para se adotar em sistemas de apoio a decisão médica.