Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Belini, Marcelo Manechine |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55136/tde-06012016-161056/
|
Resumo: |
O presente trabalho irá abordar dois temas matemáticos de diferentes contextos históricos mas que apresentam uma relação intrínseca com o número Φ, mais conhecido como número de ouro. Partiremos de uma breve descrição dos conjuntos numéricos N, Z, Q e algumas propriedades dos números racionais para, em seguida, deduzirmos os números irracionais Π e, enfim, os números reais R. Na sequência vamos trabalhar com dois problemas muito antigos: o primeiro aparece na coletânea de livros Os Elementos do matemático grego Euclides, 300 anos a.C., e diz respeito à divisão de um segmento em média e extrema razão e, o segundo, foi publicado no livro Liber Abaci do matemático italiano Leonardo Fibonacci, século XIII, e trata da reprodução de coelhos e a sequência a qual ela origina. Veremos que o número de ouro aparece em ambos os problemas e vem ao longo dos séculos desencadeando muitas teorias que tratam de padrões e beleza. Abordaremos situações do passado e do presente que fazem uso desses padrões, além de fenômenos da natureza. Também apresentaremos um conjunto de atividades para orientar professores do ensino médio de como trabalhar, numa perspectiva interdisciplinar com vários conteúdos da matemática, e o número Φ. |