Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Yang, Min Shih |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/18/18155/tde-14102009-091902/
|
Resumo: |
O incessante aumento do volume de informações produzido por uma sociedade cada vez mais informatizada tem elevado drasticamente os requisitos quanto ao desenvolvimento de dispositivos capazes de suportar velocidades de operação cada vez mais elevadas em tamanhos cada vez mais reduzidos. No entanto, a contínua redução do tamanho desses dispositivos, celebrado através da lei de Moore, também produz um indesejável aumento na produção de calor durante a operação dos mesmos, comprometendo seu desempenho global. Uma alternativa promissora para aliviar, ou mesmo superar, estas limitações é oferecida pelos dispositivos ópticos integrados. No entanto, todo esse avanço esbarrava no fato de que as dimensões de tais dispositivos estavam restringidas fundamentalmente ao que é largamente conhecido como limite de difração (LD). Uma maneira de contornar essa limitação é obtida através da utilização de Plásmon Poláritons de Superfície, ou SPPs, que, de maneira simplificada, são ondas que se propagam ao longo da superfície de um condutor depositado sobre um dielétrico. Estas são essencialmente ondas de luz que são localizadas na superfície por causa de sua interação com os elétrons livres do condutor. Nesta interação, os elétrons livres respondem coletivamente oscilando em ressonância com a onda de luz. No presente trabalho, o fenômeno de geração de SPPs é estudado teoricamente e aplicado na modelagem de diversas estruturas de interesse científico e tecnológico, tais como acopladores direcionais e ressoadores. O objetivo principal é a obtenção de estruturas capazes de proporcionar propagação de SPPs por longas distâncias, permitindo, assim, estender ainda mais o leque de possíveis aplicações. As estruturas são investigadas prioritariamente no COMSOL Multiphysics, um aplicativo baseado em elementos finitos que permite solução vetorial de problemas eletromagnéticos. Os resultados obtidos até o momento permitem afirmar que o conceito de SPP de longa distância (long range SPP, LRSPP) podem ser aplicados com sucesso a estruturas geometricamente complexas como os ressoadores em anel e acopladores direcionais. |