Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Bernardo, Heitor Montefusco |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/3/3146/tde-19072024-100121/
|
Resumo: |
A protensão, uma técnica consolidada, tem sido um estímulo fundamental no desenvolvimento das estruturas de concreto, viabilizando a construção de elementos mais leves, com vãos maiores e maior capacidade de resistência à fissuração. Além da protensão mecânica tradicional, surgiram outras abordagens promissoras, como o uso de cordoalhas de fibra de carbono reforçada com polímero (CFRP), um material mais leve e resistente. Outra inovação é a protensão química, na qual as tensões internas de reforço são geradas sem a necessidade de ação mecânica de um elemento externo. No entanto, a protensão química ainda é uma área pouco explorada e com grande potencial de pesquisa. Para avançar nesse campo, a criação de modelos numéricos de elementos finitos tem sido uma solução prática e eficiente. Esses modelos permitem analisar uma ampla gama de variáveis e prever o comportamento de sistemas complexos de forma mais rápida e precisa do que os testes em escala real. Neste contexto, o objetivo deste estudo foi desenvolver um modelo de elementos finitos capaz de prever as tensões resultantes da protensão química em materiais cimentícios. Foram adotadas estratégias que incluíram a caracterização experimental das pastas cimentícias, a criação de três modelos numéricos para análise das tensões normais e de cisalhamento, a calibração da retração química e a aplicação da retração ao componente cimentício. O principal input adotado no modelo foi a quantificação do deslocamento vertical obtido no ensaio experimental de retração química para poder assumir a hipótese da dilatação volumétrica. Os resultados obtidos indicaram que o modelo desenvolvido apresentou um desempenho adequado, permitindo a calibração dos dados experimentais de retração química da pasta de cimento e da pasta de cimento com silicato de sódio. A aplicação da retração química em ambas as camadas evidenciou a necessidade de combinar as cinéticas de retração e expansão para melhorar as tensões de protensão. Além disso, a fim de aprimorar a compressão dos resultados, especialmente no estado endurecido, é essencial adotar um modelo que considere a transição do estado fluido para o sólido. |