Lyra2: password hashing scheme with improved security against time-memory trade-offs.

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Andrade, Ewerton Rodrigues
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3141/tde-26082016-150620/
Resumo: To protect against brute force attacks, modern password-based authentication systems usually employ mechanisms known as Password Hashing Schemes (PHS). Basically, a PHS is a cryptographic algorithm that generates a sequence of pseudorandom bits from a user-defined password, allowing the user to configure the computational costs involved in the process aiming to raise the costs of attackers testing multiple passwords trying to guess the correct one. Traditional schemes such as PBKDF2 and bcrypt, for example, include a configurable parameter that controls the number of iterations performed, allowing the user to adjust the time required by the password hashing process. The more recent scrypt and Lyra algorithms, on the other hand, allow users to control both processing time and memory usage. Despite these advances, there is still considerable interest by the research community in the development of new (and better) alternatives. Indeed, this led to the creation of a competition with this specific purpose, the Password Hashing Competition (PHC). In this context, the goal of this research effort is to propose a superior PHS alternative. Specifically, the objective is to improve the Lyra algorithm, a PHS built upon cryptographic sponges whose project counted with the authors\' participation. The resulting solution, called Lyra2, preserves the security, efficiency and flexibility of Lyra, including: the ability to configure the desired amount of memory and processing time to be used by the algorithm; and (2) the capacity of providing a high memory usage with a processing time similar to that obtained with scrypt. In addition, it brings important improvements when compared to its predecessor: (1) it allows a higher security level against attack venues involving time-memory trade-offs; (2) it includes tweaks for increasing the costs involved in the construction of dedicated hardware to attack the algorithm; (3) it balances resistance against side-channel threats and attacks relying on cheaper (and, hence, slower) storage devices. Besides describing the algorithm\'s design rationale in detail, this work also includes a detailed analysis of its security and performance in different platforms. It is worth mentioning that Lyra2, as hereby described, received a special recognition in the aforementioned PHC competition.