Solução numérica de equações diferenciais parciais implícitas de primeira ordem

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Escobedo, Sergio Moises Aquise
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-19032015-094148/
Resumo: As equações diferencias parciais tem origem na modelagem do problemas nas ciências e engenharia, tais como a equação do calor, equação da onda, equação de Poisson, entre outras. Para muitas destas equações não é tão simples obter uma técnica analítica para achar sua solução e nestes casos é necessário uso de soluções aproximadas obtidas pelo computador. Existem técnicas tradicionais para solução numérica de uma grande classe de equações diferenciais, mas quando esta equação está na forma implícita, muitas destas técnicas já não podem ser aplicadas. Frequentemente as equações diferenciais parciais de segunda ordem tem maior estudo que as equações de primeira ordem sendo uma das razões que os modelos envolvem derivadas de segunda ordem. No caso das equações diferenciais parciais de primeira ordem implícitas a não linearidade em alguns casos não permite determinar uma solução de forma simples. O trabalho desenvolvido faz uma revisão do método das características para estabelecer as condições necessárias e suficientes, que permitam encontrar uma solução, ao mesmo tempo evidencia a complexidade de determinar uma solução clássica. Dentro das aplicações existentes relacionadas com as Equações Diferenciais Parciais Implícitas de Primeira Ordem, podemos mencionar a Equação cinemática e a Equação de Hamilton-Jacobi que podem-se associar com o movimento de partículas. Para a solução de uma Equação Diferencial Implícita de Primeira Ordem o método das características tem uma estrutura de solução que permite resolver a equação de forma analítica e numérica, desde que se verifique o Teorema de Cauchy. O objetivo deste trabalho de mestrado é obter um método numérico para a solução de equações diferenciais parciais de primeira ordem implícitas. Nós propomos um método numérico do tipo previsor-corretor que resolve uma EDP de primeira ordem implícita, utilizando o sistema característico em conjunto com as condições de banda, para reduzir o erro global nas iterações.