Análise de viés em notícias na língua portuguesa

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Arruda, Gabriel Domingos de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/100/100131/tde-10012016-144315/
Resumo: O projeto descrito neste documento propõe um modelo para análise de viés em notícias, procurando identificar o viés dos meios de comunicação em relação a entidades políticas. Foram analisados três tipos de viés: o viés de seleção, que avalia o quanto uma entidade é referenciada pelo meio de comunicação; o viés de cobertura, que avalia quanto destaque é destinado a entidade e, por fim, o viés de afirmação, que avalia se estão falando mal ou bem da entidade. Para tal, foi construído um corpus de notícias sistematicamente extraídas de 5 produtores de notícias e classificadas manualmente em relação à polaridade e entidade alvo. Técnicas de análise de sentimentos baseadas em aprendizado de máquina foram validadas utilizando o corpus criado. Criou-se uma metodologia para identificação de viés, utilizando o conceito de outliers, a partir de métricas indicadoras. A partir da metodologia proposta, foi analisado o viés em relação aos candidatos ao governo de São Paulo e à presidência a partir do corpus criado, em que se identificou os três tipos de viés em dois produtores de notícias