Esquemas numéricos para equações hiperbólicas e aplicações

Detalhes bibliográficos
Ano de defesa: 2001
Autor(a) principal: Martinez, Marcio Demetrius
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-12032018-113023/
Resumo: Neste trabalho estudamos esquemas numéricos para resolver as formulações de valor de fronteira e de valor inicial para uma frente em movimento. Nosso objetivo é motivar e apresentar esquemas baseados nas relações existentes entre frentes em propagação, equações de Hamilton-Jacobi e leis de conservação hiperbólicas. Quando uma frente inicial evolui no tempo através de uma das formulações hiperbólicas, podem surgir singularidades, cúspides e mudanças em sua topologia e assim faz-se necessário a compreensão das técnicas de discretização de leis de conservação hiperbólicas para a obtenção de esquemas numéricos capazes de tratar e descrever corretamente esses problemas na geometria da frente. A solução numérica das leis de conservação inclui o desenvolvimento de esquemas numéricos capazes de resolver choques, descontinuidades e escolher a solução entrópica entre as muitas soluções fracas existentes. Para isso, analisamos esquemas na forma conservativa com propriedades especiais, tais como, esquemas Upwind, Monótonos, TVD, Entropia, Limitante de fluxo e Limitante de inclinação. Esses esquemas são acompanhados com uma coleção de implementações. Essa teoria pode ser empregada para o rastreainento da interface de escoamentos multifsicos, e uma aplicação futura que estamos interessados é a determinação da fronteira de um domínio a partir de seus pontos interiores para aplicação no simulador de escoamentos multifásicos na área de mecânica de fluidos.