Algoritmos eficientes para estimação de imagens acústicas.

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Santos, Paulo Otávio Moreira dos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/3/3142/tde-08042021-110846/
Resumo: O problema de imageamento acústico consiste em mapear as direções e intensidades de fontes sonoras usando um arranjo de microfones. Vários métodos foram desenvolvidos para reduzir o custo computacional da estimação de imagens acústicas, a maioria deles é baseada na transformada de arranjo de Kronecker (KAT) ou a transformada rápida de Fourier para amostras que não são igualmente espaçadas (NFFT). Neste trabalho, mostramos como aplicar a KAT a métodos convencionais e também métodos mais avançados de otimização. A aplicação da KAT resulta numa redução significativa no uso de memória e no custo computacional para uma grande variedade de métodos. Estendemos o uso da KAT para novos algoritmos de otimização esparsa e desenvolvemos uma nova classe de algoritmos de homotopia para aplicações de imagens acústicas. A KAT também foi combinada com outros métodos eficientes para solução de problemas de mínimos quadrados, resultando em implementações eficientes de algoritmos bem establecidos como orthogonal matching pursuit (OMP). Finalmente, exploramos métodos encontrados na literatura que eram conceitualmente similares à KAT para chegar a uma nova maneira de estimar imagens acústicas usando produtos de Schur-Hadamard em conjunto com a KAT na solução eficiente de problemas de mínimos quadrados.