Extração de informação contextual utilizando mineração de textos para sistemas de recomendação sensíveis ao contexto

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Sundermann, Camila Vaccari
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-10082015-192318/
Resumo: Com a grande variedade de produtos e serviços disponíveis na Web, os usuários possuem, em geral, muita liberdade de escolha, o que poderia ser considerado uma vantagem se não fosse pela dificuldade encontrada em escolher o produto ou serviço que mais atenda a suas necessidades dentro do vasto conjunto de opções disponíveis. Sistemas de recomendação são sistemas que têm como objetivo auxiliar esses usuários a identificarem itens de interesse em um conjunto de opções. A maioria das abordagens de sistemas de recomendação foca em recomendar itens mais relevantes para usuários individuais, não levando em consideração o contexto dos usuários. Porém, em muitas aplicações é importante também considerar informações contextuais para fazer as recomendações. Por exemplo, um usuário pode desejar assistir um filme com a sua namorada no sábado à noite ou com os seus amigos durante um dia de semana, e uma locadora de filmes na Web pode recomendar diferentes tipos de filmes para este usuário dependendo do contexto no qual este se encontra. Um grande desafio para o uso de sistemas de recomendação sensíveis ao contexto é a falta de métodos para aquisição automática de informação contextual para estes sistemas. Diante desse cenário, neste trabalho é proposto um método para extrair informações contextuais do conteúdo de páginas Web que consiste em construir hierarquias de tópicos do conteúdo textual das páginas considerando, além da bag-of-words tradicional (informação técnica), também informações mais valiosas dos textos como entidades nomeadas e termos do domínio (informação privilegiada). Os tópicos extraídos das hierarquias das páginas Web são utilizados como informações de contexto em sistemas de recomendação sensíveis ao contexto. Neste trabalho foram realizados experimentos para avaliação do contexto extraído pelo método proposto em que foram considerados dois baselines: um sistema de recomendação que não considera informação de contexto e um método da literatura de extração de contexto implementado e adaptado para este mestrado. Além disso, foram utilizadas duas bases de dados. Os resultados obtidos foram, de forma geral, muito bons apresentando ganhos significativos sobre o baseline sem contexto. Com relação ao baseline que extrai informação contextual, o método proposto se mostrou equivalente ou melhor que o mesmo.