Um estudo da compatibilidade dos dados de Gamma Ray Bursts com as teorias de violação da invariância de Lorentz

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Castilho, Rafael Rodrigues
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
GRB
Link de acesso: https://www.teses.usp.br/teses/disponiveis/76/76131/tde-27092023-095213/
Resumo: Observatórios modernos nos permitiram avanços no estudo da astrofísica de partículas, devido a suas grandes precisões nas medidas e a possibilidade de estudar um grande número de fontes e de eventos. Graças a tais avanços, hoje é possível utilizar a astrofísica de partículas para testar física fundamental e seus limites de validade. Alguns estudos recentes dedicados a procura de teorias unificadoras, como por exemplo teorias quânticas da gravidade, são compatíveis com a quebra da invariância de Lorentz (LIV). Embora os sinais de LIV são esperados para serem pequenos e ocorram em altas energias, nós podemos utilizar da astrofísica de partículas para determinar limites de validade dadas as altíssimas energias e grandes distâncias envolvidas. Em nosso projeto realizamos um estudo do tempo de atraso de fótons em função da energia devido a quebra da invariância de Lorentz. Nós primeiramente fizemos um estudo teórico do Modelo Padrão Estendido (SME), a fim de compreender como a quebra de invariância de Lorentz pode surgir na teoria; Deduzimos a relação de dispersão modificada, que neste regime implica que fótons com altas energias possuem velocidades diferentes devido a modificações na sua relação de dispersão. Portanto, fótons emitidos simultaneamente em uma fonte astrofísica devem chegar à Terra em tempos diferentes; Também deduzimos a função que descreve esta diferença no tempo considerando efeitos cosmológicos. Em seguida, nós fizemos um estudo das fontes utilizadas neste trabalho, os Gamma Ray Bursts (GRBs), a fim entender seu comportamento e propriedades físicas, como seus diferentes tipos e mecanismos de emissão. Nós propomos um novo reescalonamento dos dados experimentais para que seja possível fazer uma análise estatística utilizando múltiplas fontes simultaneamente. Posteriormente nós selecionamos e coletamos um conjunto que contém 57 fótons de 14 GRBs. O conjunto que consiste em todos os fótons detectados pelo Telescópio Espacial Fermi de Raios Gama entre os anos de 2008 e 2020, cuja energia emitida é maior que 10 GeV e que foram detectados dentro de um intervalo de tempo, que depende do Redshift, após o trigger. A procura pelos GRBs com redshift conhecidos foi feita usando a base de dados do Observatório de Neutrino IceCube. Usamos a base de dados do FERMI para obter os parâmetros observacionais dos fótons individuais. Em seguida, realizamos uma análise estatística a fim de constatar a compatibilidade com o modelo de LIV. E, propomos, baseados nas propriedades do GRBs, um conjunto de funções com objetivo de modelar a diferença no tempo de chegada como atrasos intrínsecos na fonte, não simultaneidade na emissão, e com isto, determinar se há ou não compatibilidade com o modelo de LIV. Em nossas análises, nós demonstramos que o comportamento dos fótons depende do cutoff escolhido para a energia. Fótons mais energéticos tiveram um comportamento mais compatível com LIV e fótons menos energéticos tiveram um comportamento mais compatível com um modelo de delay intrínseco, levando a existência duas regiões com comportamentos distintos. Portanto, podemos concluir que os efeitos LIV, caso ocorram, ocorrem com fótons de altíssima energia; Para fótons menos energéticos seus efeitos são não detectáveis pelos atuais observatórios e provavelmente o atraso observado nos fótons é devido aos mecanismos de emissão.