Aplicações de quase Monte-Carlo no mercado de derivativos brasileiro

Detalhes bibliográficos
Ano de defesa: 2001
Autor(a) principal: Barbe, Thierry
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/12/12138/tde-30062023-162456/
Resumo: O objetivo deste trabalho é duplo. Em primeira instância, testamos, pela primeira vez em trabalho aplicado de finanças, a sequência de Niederreiter- Xing em simulação quase Monte-Cario. De acordo com medidas de dispersão, a sequência de Niederreiter-Xing deve apresentar desempenho superior as construções clássicas de Sobol e Halton. Espera-se assim atenuar os problemas apresentados por estas quando cresce a dimensão das simulações. Em segunda instância aplicamos o método de quase Monte-Carlo ao cálculo de exposição a risco de mercado de um portfólio de opções (VaR). Acreditamos que este seja o campo mais fértil a aplicação da simulação quase Monte-Carlo no mercado financeiro brasileiro. Após uma breve introdução a simulação Monte-Carlo e a construção de sequências quase-aleatórias, efetuaremos uma resenha dos principais trabalhos que tratam do método quase Monte-Carlo em finanças. Finalmente apresentaremos os resultados obtidos em nossos experimentos. Estes incluem o cálculo de VaR de um portfólio de opções e precificações de opções exóticas. Uma apresentação formal das sequências quase-aleatórias e de suas principais propriedades matemáticas encontrar-se em apêndice