Detalhes bibliográficos
Ano de defesa: |
1994 |
Autor(a) principal: |
Franco, Anarosa Alves |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-010104/
|
Resumo: |
Em termos de geometria riemanniana, uma variedade conformemente plana e uma variedade riemanniana tal que cada ponto tem uma vizinhanca conformemente difeomorfa a um aberto do espaco euclidiano. Neste trabalho, nos estudamos alguns aspectos conhecidos da geometria local e global das variedades conformemente planas (assumidas como sendo) isometricamente imersas numa forma espacial. Sua parte principal (capitulo 2), descreve completamente a geometria e a topologia das hipersuperficies conformemente planas compactas. Na ultima parte (capitulo 3), nos descrevemos alguns resultados algebricos, topologicos e geometricos sobre subvariedades conformemente planas em baixa codimensao. Como as formas espaciais de mesma dimensao sao localmente conformemente difeomorfas, por simplicidade, nos sempre assumimos que o espaco ambiente e um espaco euclidiano |