Solução numérica em jatos de líquidos metaestáveis com evaporação rápida.

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Julca Avila, Jorge Andrés
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3150/tde-13082008-010924/
Resumo: Este trabalho estuda o fenômeno de evaporação rápida em jatos de líquidos superaquecidos ou metaestáveis numa região 2D. O fenômeno se inicia, neste caso, quando um jato na fase líquida a alta temperatura e pressão, emerge de um diminuto bocal projetando-se numa câmara de baixa pressão, inferior à pressão de saturação. Durante a evolução do processo, ao cruzar-se a curva de saturação, se observa que o fluido ainda permanece no estado de líquido superaquecido. Então, subitamente o líquido superaquecido muda de fase por meio de uma onda de evaporação oblíqua. Esta mudança de fase transforma o líquido superaquecido numa mistura bifásica com alta velocidade distribuída em várias direções e que se expande com velocidades supersônicas cada vez maiores, até atingir a pressão a jusante, e atravessando antes uma onda de choque. As equações que governam o fenômeno são as equações de conservação da massa, conservação da quantidade de movimento, e conservação da energia, incluindo uma equação de estado precisa. Devido ao fenômeno em estudo estar em regime permanente, um método de diferenças finitas com modelo estacionário e esquema de MacCormack é aplicado. Tendo em vista que este modelo não captura a onda de choque diretamente, um segundo modelo de falso transiente com o esquema de \"shock-capturing\": \"Dispersion-Controlled Dissipative\" (DCD) é desenvolvido e aplicado até atingir o regime permanente. Resultados numéricos com o código ShoWPhasT-2D v2 e testes experimentais foram comparados e os resultados numéricos com código DCD-2D v1 foram analisados.