Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Vacilotto, Milena Moreira |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/76/76133/tde-14052024-083827/
|
Resumo: |
Production of value-added compounds and sustainable materials from agro-industrial residues is essential for better waste management and building of circular economy, especially considering the anthropogenic effects in the global warming and natural resources depletion. This includes the valorization of the hemicellulosic fraction of plant biomass, aiming to produce prebiotic oligosaccharides, widely explored in food and feed industries. In the present work, we conducted biochemical and biophysical characterization of two prokaryotic xylanases of family 30_8 from Bacillus pumilus and Ruminococcus champanellensis, and assessed their applicability for xylooligosaccharides production using alkaline pretreated corn cob and eucalyptus sawdust collected from a local market and a sawmill shop in Araraquara, respectively. Mass spectrometry and high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) analysis revealed that RcXyn30A liberates mainly long monoglucuronylated xylooligosaccharides and proved to be highly inefficient in the cleavage of X4, X5 and X6, whereas BpXyn30A produces both linear and branched oligosaccharides. Crystallographic structure of BpXyn30A and RcXyn30A catalytic domain were solved and refined to 2.16 Å and 1.37Å resolution, respectively. Structural analysis of the enzymes binding cleft showed a conserved set of amino acids interacting with glucuronic acid substitution in the subsite -2b by several hydrogen bonds and ionic interactions, a characteristic shared between true glucunoxylanases. Furthermore, RcXyn30A has a larger β5-α5 loop as compared to other GH30 xylanases, which might be crucial for creating an additional aglycone subsite (+3). Finally, B. pumilus xylanase obtained higher conversion yields from pretreated biomasses than RcXyn30A, although the latter presents a specific activity against glucuronoxylan 9 times higher than the former. |