Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Bueno, Ivander Augusto Morais |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/3/3137/tde-19052021-160539/
|
Resumo: |
A tecnologia de cominuição de minérios com o uso de prensa de rolos de alta pressão (HPGR - High Pressure Grinding Roll) se destacou nos diversos setores da mineração, desde seu surgimento na década de 1980, motivada pela sua eficiência energética. Nas usinas de pelotização de minério de ferro, os ganhos de produção acrescidos dos menores custos em aquisição e operação, maior estabilidade do processo e à distribuição granulométrica da alimentação também contribuíram para aplicação dos HPGRs. Apesar dos benefícios, observa-se pouco conhecimento da influência das variáveis intervenientes ao processo de prensagem e sua relação com o ganho de superfície específica. Essa compreensão é fundamental para maximizar o desempenho da prensagem. Este trabalho apresenta a utilização de redes neurais artificiais (RNA) para apresentar as variáveis de maior influência nesse processo; umidade, pressão e rotação das bandagens, através da análise de sensibilidades, e para predizer os resultados no ganho de superfície específica. O modelo demonstra resultados com boa aproximação com os dados reais (erro inferior a 5%), indicando que a RNA possibilita a intervenção proativa no processo produtivo, podendo resultar em melhoria de desempenho. |