Utilização de imagens de satélite para predição de clorofila-a e sólidos suspensos em corpos d\'água: estudo de caso da Represa do Lobo/SP

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Guimarães, Tainá Thomassim
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
ANN
RNA
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18139/tde-03092019-160041/
Resumo: Medidas complementares ao monitoramento in situ da qualidade da água podem ser obtidas por meio de sensoriamento remoto, sendo clorofila-a e sólidos suspensos alguns dos parâmetros que podem ser estimados. Este trabalho teve como objetivo explorar técnicas de processamento de imagens, análises estatísticas e de inteligência artificial com o objetivo de predizer e modelar as concentrações de clorofila-a e sólidos suspensos totais na Represa do Lobo/SP. Metodologicamente, foram realizadas coletas em campo, em três diferentes datas, para amostragem de água e posterior análise laboratorial. Os resultados limnológicos foram analisados, modelados e comparados com imagens processadas do satélite Sentinel-2. Análises de regressão e redes neurais artificiais (RNA) foram exploradas para gerar modelos de predição para a área de estudo. Os resultados indicam que métodos de regressão podem não ser adequados para capturar as relações lineares e/ou não-lineares entre os compostos de interesse e as respostas espectrais da água recebidas pelo satélite, indicando a capacidade das redes neurais em modelar relações mais complexas. Através da integração da resposta que o sensor MSI do satélite Sentinel-2 coletou nas regiões do visível ao infravermelho médio e de RNAs foi possível modelar a concentração de clorofila-a, com valores de R² superiores a 0,65 e de RMSE inferiores a 2,5 μg/L, e gerar mapas que permitam seu monitoramento temporal e análise espacial na área de estudo. Os resultados para SST não foram satisfatórios devido à complexidade óptica do ambiente analisado, bem como as baixas concentrações de SST na represa. Portanto, a integração de dados de sensoriamento remoto no mapeamento de corpos d\'água com a aplicação de redes neurais na análise de dados é uma abordagem promissora para prever clorofila-a e sólidos suspensos, bem como suas variações temporais e espaciais.