Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Batista, Douglas Toledo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-21092015-105550/
|
Resumo: |
O modelo de referência para dados de contagem é o modelo de Poisson. A principal característica do modelo de Poisson é a pressuposição de que a média e a variância são iguais. No entanto, essa relação de média-variância nem sempre ocorre em dados observacionais. Muitas vezes, a variância observada nos dados é maior do que a variância esperada, fenômeno este conhecido como superdispersão. O objetivo deste trabalho constitui-se na aplicação de modelos lineares generalizados, a fim de selecionar um modelo adequado para acomodar de forma satisfatória a superdispersão presente em dados de contagem. Os dados provêm de um experimento que objetivava avaliar e caracterizar os parâmetros envolvidos no florescimento de plantas adultas da laranjeira variedade \"x11\", enxertadas nos limoeiros das variedades \"Cravo\" e \"Swingle\". Primeiramente ajustou-se o modelo de Poisson com função de ligação canônica. Por meio da deviance, estatística X2 de Pearson e do gráfico half-normal plot observou-se forte evidência de superdispersão. Utilizou-se, então, como modelos alternativos ao Poisson, os modelos Binomial Negativo e Quase-Poisson. Verificou que o modelo Quase-Poisson foi o que melhor se ajustou aos dados, permitindo fazer inferências mais precisas e interpretações práticas para os parâmetros do modelo. |