Uma abordagem Ensemble Learning para modelos de detecção de intrusão para redes industriais

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Dalarmelina, Nicole do Vale
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
IDS
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-12012024-154719/
Resumo: A Internet tem se tornado um recurso essencial para a humanidade e para os dispositivos tecnológicos existentes atualmente, tanto dentro de casa Internet of Things (IoT) quanto dentro de industrias Industrial Internet of Things (IIoT). Todo esse avanço tecnológico pode trazer benefícios, mas também pode oferecer riscos à integridade dos dados se a segurança não for devidamente realizada utilizando Sistemas de Detecção de Intrusão (IDS) eficientes. Neste trabalho é proposto um modelo que poderá ser utilizado por IDSs para redes industriais utilizando Ensemble Learning. Para isso são analisadas abordagens para a extração das melhores features dos datasets utilizados, assim como a aplicação de algoritmos de balanceamento de dados a fim de selecionar as melhores abordagens para o treinamento do modelo proposto viabilizando possíveis retreinamentos do modelo a cada novo ataque encontrado, o modelo desenvolvido no presente trabalho obteve acurácia de 99.93%, concluindo seu treinamento em apenas 1 hora e 34 minutos, enquanto o modelo treinado utilizando os datasets sem tratamento obteve acurácia de 99.94% concluindo seu treinamento em 156 horas.