Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Souza, Rafael Boffo de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/46/46136/tde-11122023-184413/
|
Resumo: |
Este trabalho concentrou-se em investigar os principais mecanismos de reação que ocorrem durante os processos de decomposição térmica de uma classe de líquidos iônicos energéticos (LIEs), os chamados líquidos iônicos hipergólicos, a fim de compreender a relação entre a variação da estrutura química de cátions nitrogenados e os fatores que governam a modulação da estabilidade térmica destes compostos. Para isso, o trabalho assim desenvolvido foi dividido em duas partes, e baseou-se em uma investigação sistemática dos líquidos iônicos (LIs) formados pela combinação entre o ânion dicianamida e diferentes estruturas catiônicas. Na Parte I deste estudo, o sistema investigado era composto pelos LIs contendo uma série de cátions nitrogenados, com estruturas centrais distintas e todos possuindo os substituintes alquílicos butil e metil. O efeito da estrutura do cátion sobre a estabilidade térmica foi obtido por análises de TGA/DTG, de forma que os principais caminhos de decomposição foram determinados por Py GC/MS, por meio da identificação e quantificação dos produtos gasosos gerados durante o processo pirolítico. Desta forma, foi possível designar que o principal evento de perda mássica está associado à reação de desalquilação de um grupo -CH3 das estruturas catiônicas, seguindo um mecanismo de SN2. Aliado a cálculos teóricos (Hartree-Fock), os resultados das análises energéticas para os caminhos de reação nos sítios H3C – N+(LG) mostraram que o comportamento de estabilidade térmica tem origem estritamente na barreira energética da reação, ΔE#(ζ), a qual é acompanhada pela mesma variação das Tpeak\'s. Utilizando os Modelos de Tensão de Ativação e Interseção de Curvas de Potenciais Harmônicos para analisar o perfil energético das reações, identificou-se que a energia necessária para rearranjar os reagentes até a formação do estado de transição (TS), é a parcela responsável por governar a variação da barreira energética para os diferentes cátions, de tal forma que a força das ligações reativas do tipo N+ – C é o parâmetro modulador da reatividade química dentro de um mesmo grupo substituinte. Com o intuito de sondar a estrutura eletrônica dos diferentes cátions, medidas espectroscópicas de deslocamento químico de 13C, obtidas por RMN, mostraram que o aumento da reatividade química/diminuição da estabilidade térmica, associada à redução da força das ligações reativas N+ – C, tem sua origem na diminuição da densidade eletrônica próximo à estas regiões da estrutura molecular. Na Parte II deste trabalho, a partir das conclusões prévias obtidas anteriormente, mostrou-se que é possível correlacionar medidas espectroscópicas de deslocamento de 13C com propriedades de reatividade química/estabilidade térmica para um número maior de estruturas catiônicas energéticas que se decompõe via reação de SN2. A investigação da estrutura eletrônica de cátions de 1-alquil-3-metilimidazólio por meio das espectroscopias de RMN e vibracional no infravermelho, mostrou que a redução da estabilidade térmica para estes compostos está diretamente relacionada à diminuição da densidade eletrônica no anel imidazol. Com isso, o poder retirador de elétrons associado à funcionalização alquílica ligada diretamente a estrutura catiônica, apresentou a seguinte ordem de hierarquia entre os seguintes substituintes: -benzil > -alil > -octil ≈ -hexil > -butil > -etil > -metil. |