Meta-heurística BRKGA aplicada a um problema de programação de tarefas no ambiente flowshop híbrido.

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Mainieri, Guilherme Barroso
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3136/tde-26122014-152423/
Resumo: O presente trabalho aborda o ambiente de produção conhecido como flowshop híbrido. Devido a crescente complexidade dos sistemas de produção, este ambiente é frequentemente encontrado em situações reais de manufatura. No caso estudado existem estágios em série e em cada estágio existe um número de máquinas idênticas em paralelo. Os tempos de processamento em cada estágio são dependentes da tarefa, já a rota através do sistema é a mesma para todas as tarefas. O objetivo é minimizar o atraso total, ou seja, a soma do atraso de todas as tarefas. Um modelo de programação linear inteira mista é apresentado para este problema e, dada a sua complexidade, ele é abordado através de uma meta-heurística relativamente nova e que, conforme revisão da literatura, nunca foi aplicada a este problema. Conhecida por BRKGA (Biased Random-Key Genetic Algorithm), este método codifica as soluções de maneira a obter um melhor desempenho em comparação com algoritmos genéticos tradicionais. Com o objetivo de avaliar a melhor estratégia, são propostas diversas versões de BRKGA para o problema considerado. Estas versões buscam explorar características das melhores heurísticas construtivas da literatura, dentre estas: ordens direta e inversa de programação das tarefas dentro do ambiente produtivo, identificação do estágio gargalo e diferenciação da programação do gargalo dos demais estágios. Experimentos computacionais foram realizados com 432 problemas teste de grande porte. Os métodos apresentados são comparados entre si e os resultados mostraram que uma versão do BRKGA se destaca frente às demais, visto que ela atingiu o melhor resultado em 61% dos problemas. Destaca-se que o método de melhor desempenho da literatura obteve a melhor solução em apenas 15% dos problemas. Devido às dimensões dos problemas teste da literatura, não foi possível encontrar suas soluções ótimas. Deste modo, este trabalho propõe um novo limitante inferior para o mínimo atraso total. Além disso, 576 novos problemas teste de menores dimensões são propostos e seus resultados ótimos são utilizados para aprofundar as comparações. Os resultados deste experimento indicaram que o BRKGA proposto apresentou um bom desempenho visto que, na média, seus resultados estão apenas a 2,4% dos resultados ótimos.