Síntese de nanoestruturas de WO3: caracterização e investigação das propriedades sensoras

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Borges, Janaina Lima
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/18/18158/tde-23082022-162615/
Resumo: O composto trióxido de tungstênio (WO3) tem sido estudado devido suas excelentes propriedades multifuncionais, sendo aplicado em dispositivos e óticos, (foto)catalisadores, sensores resistivos de gás, entre outros. Na última década, os pesquisadores têm realizado esforços para o desenvolvimento racional de nanoestruturas de WO3 exibindo propriedades superiores. Este trabalho reporta a preparação de filmes finos e espessos do composto puro de WO3, pela técnica de spin-coating, visando sua aplicação como sensor resistivo de gás. As amostras foram preparadas por pelo método dos precursores polimérico (MPP), e método hidrotermal assistido por micro-ondas (MHAM). As propriedades estruturais e morfológicas das amostras de WO3 foram investigadas pelas técnicas de análise termogravimétrica (TGA), difração de raios X (DRX), espectroscopia Raman, medidas de área superficial BET, espectroscopia ultravioleta-visível (UV-Vis) e microscopia eletrônica de varredura (FE-MEV). Medidas de DRX e de espectroscopia Raman indicaram a formação de fase única cristalina de WO3 com simetria monoclínica P21/n. Imagens obtidas por FE-MEV revelaram que os diferentes métodos de síntese (MPP e MHAM) produziram diferentes partículas de WO3 exibindo distintas morfologias, esferas não-homogêneas (MPP) e cuboides (MHAM). Adicionalmente, verificamos que a temperatura de tratamento, para as amostras MPP, e o tempo de tratamento, para as amostras MHAM, afetaram somente o tamanho das partículas de WO3. No que tange os experimentos de detecção de gás, todas as amostras preparadas neste trabalho foram sensíveis aos gases ozônio (O3) e hidrogênio (H2), para uma temperatura de trabalho entre 250°C e 300°C. Os resultados obtidos mostraram que a amostra de WO3 obtida pelo método MHAM, isto é, MHAM20, exibiu a melhor resposta sensora ao gás, detectando níveis de O3 a partir de 50 ppb, além de exibir total recuperação a cada ciclo de exposição. Estes resultados revelaram o potencial do composto WO3 nanoestruturado para aplicações práticas como sensor de gás O3.