Detalhes bibliográficos
Ano de defesa: |
1999 |
Autor(a) principal: |
Rigo, Eduardo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/18/18134/tde-13122017-163547/
|
Resumo: |
O Método dos Elementos Finitos quando aplicado à análise de estruturas, em sua forma usual, conduz a sistemas de equações que, no caso não-linear, exigem algoritmos iterativos que realizam, em essência, uma linearização a cada passo de carga. Por outro lado, o Método da Energia formula o problema de análise estrutural na forma de uma minimização, podendo apresentar restrições sobre a função deslocamento, por exemplo. Nesse caso, os algoritmos de programação matemática proporcionam a maneira mais consistente para a obtenção da solução. O presente trabalho de mestrado trata, essencialmente, da aplicação das técnicas de otimização como ferramenta para a análise do comportamento não-linear de estruturas, que pode ser decorrente de condições de vinculação. Os problemas estruturais são formulados via Método da Energia, que resulta na minimização de funções quadráticas sujeitas a um conjunto de restrições. São discutidos os métodos do tipo Gradiente, Newton e Quase-Newton, com a descrição dos seus algoritmos básicos e apresentação da regra de busca unidimensional adotada (Regra de Armijo ou Exata). Devido ao fato do Método de Newton ter apresentado uma melhor convergência em relação aos demais algoritmos estudados, optou-se por combiná-lo com uma estratégia de conjuntos ativos para o caso de minimização com variáveis canalizadas. |