Uso de métodos bayesianos na análise de dados de tempo de vida bivariados

Detalhes bibliográficos
Ano de defesa: 1997
Autor(a) principal: Leandro, Roseli Aparecida
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/11/11134/tde-20210104-201622/
Resumo: Numerosos modelos paramétricos são usados na análise de dados de tempo de vida e em problemas relacionados com a modelagem de processos de falha e envelhecimento. Entre os modelos univariados, a distribuição exponencial, particularmente, tem um papel muito importante. Na prática, entretanto, o tempo de vida de um sistema depende do funcionamento de seus componentes. Nos últimos 30 anos, têm sido formuladas várias versões da distribuição exponencial bivariada para descrever o tempo de falha de um sistema com dois componentes. Neste trabalho apresenta-se um estudo sobre o Uso de Métodos Bayesianos na Análise de Dados de Sobrevivência Bivariados utilizando uma das versões da distribuição exponencial bivariada: a distribuição de BLOCK & BASU. Considerando-se dados de sobrevivência bivariados e assumindo-se a distribuição de BLOCK & BASU desenvolve-se uma análise sob o enfoque clássico e sob o enfoque Bayesiano, exploram-se diferentes parametrizações para melhorar as inferências aproximadas, realizam-se estudos sobre confiabilidade. Faz-se uma análise sob o enfoque clássico e sob o enfoque Bayesiano da aplicação da distribuição ACBVE em testes de vida acelerados. Estuda-se o modelo de regressão com dados de sobrevivência bivariados. A implementação prática dos métodos Bayesianos usualmente exige o uso de métodos computacionais para calcular os sumários de distribuições a posteriori de interesse. Com este fim métodos numéricos e métodos de aproximação são de grande interesse. Um método que tem sido bastante utilizado é o método de aproximação de Laplace (veja por exemplo, TIERNEY & KADANE, 1986). Ocorre que, na prática, modelos que refletem a realidade são complexos ou porque apresentam um grande número de parâmetros e/ou porque a distribuição a priori utilizada reflete realisticamente a informação a priori disponível (ou seja, não é adotada simplesmente por conveniências matemáticas). Assim tornando a aplicação destes métodos inviável. Neste trabalho para a análise Bayesiana, utilizam-se algoritmos de simulação via Cadeias de Markov com Monte Carlo, amostrador de Gibbs (veja por exemplo, GELFAND & SMITH, 1990) e Metropolis & Hastings (veja por exemplo, CHIB & GREENBERG, 1995) para obter amostras aleatórias de distribuições a posteriori de interesse.