Detalhes bibliográficos
Ano de defesa: |
2005 |
Autor(a) principal: |
Falvo, Maurício |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-19122017-105229/
|
Resumo: |
A identificação de unia planta exige, pelos padrões de taxionomia vegetal, a análise de folhas, flores e frutos. O projeto TreeVis surge com uma proposta de auxiliar na identificação de espécies vegetais, por meio do uso de métodos biométricos, a partir da análise de alguns atributos de uma folha. A contribuição inicial deste trabalho de mestrado, para o projeto TreeVis, está obtenção de classificadores por meio do uso de assinaturas de contorno, sob o domínio da frequência, possibilitando a composição de diversos tipos de assinaturas e classificadores para uma mesma espécie. Devido à baixa eficiência obtida por métodos de classificação como distância mínima, optou-se pelo uso de redes neurais. Essa abordagem evidenciou a necessidade de solução de dois problemas: o grande número de possibilidades de composição de sinais o que ocasionaria um grande esforço computacional para a obtenção de todas respectivas redes neurais; e o reduzido número das amostras utilizadas no trabalho - o qual comprometeria as etapas de treinamento e teste de uma rede neural. Para a solução desses problemas, foram desenvolvidos dois métodos: o primeiro método identifica e seleciona as assinaturas que apresentam um maior potencial de sucesso em obter um classificador por meio de redes neurais, solucionando o problema e desperdício de esforço computacional; o segundo método possibilita a geração de amostras artificiais de folhas através da combinação dos espectros de frequência do contorno das amostras reais por meio operadores genéticos de cross-over e mutação. Solucionadas as duas questões, foram obtidas diversas redes neurais, através da indicação das assinaturas de melhor potencial e treinadas com amostras artificiais. Do total de 31 classes, 7 foram descartadas da tentativa de obtenção de classificadores por não apresentarem nenhuma assinatura com potencial de classificação - conforme indicação do método desenvolvido. Das 24 espécies restantes, foram obtidos classificadores para 18 espécies (75%) com taxas médias de 85% de acerto. A execução deste trabalho necessitou do desenvolvimento de um arcabouço para a automatização da geração, treinamento e teste das redes neurais. |