Método da diagonalização na base de Krylov com agrupamento de linhas no ajuste de sinais ruidosos de espectroscopia por RM

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Silva, Danilo Mendes Dias Delfino da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/76/76132/tde-13052020-102037/
Resumo: A Espectroscopia por Ressonância Magnética (ERM) in vivo é uma técnica não invasiva e não ionizante que permite a quantificação da concentração dos metabólitos presentes no corpo humano. No domínio da frequência, as ressonâncias são representadas por linhas espectrais ou picos obtidos através da Transformada de Fourier do sinal adquirido no domínio do tempo. A concentração de cada metabólito é proporcional ao número de núcleos visíveis à técnica de RM e à intensidade de seus respectivos picos. O sinal de um mesmo metabólito pode ser composto por vários picos no domínio da frequência, que podem estar sobrepostos aos demais em função das suas larguras e da resolução espectral. Métodos que realizam ajuste do espectro através da combinação linear de bases espectrais in vitro ou simuladas; e métodos que representam o sinal através de funções matemáticas estão disponíveis na literatura. Pertencente a esta última família, o Krylov Basis Diagonalization Method (KBDM), que representa o sinal através da sobreposição de senoides exponencialmente amortecidas no domínio do tempo foi pouco estudado na literatura no contexto da sua aplicação em ERM in vivo. Portanto, seu posicionamento em relação aos demais métodos da mesma família não é claro. Entre estes, o HLSVD-PRO (HLSVD with partial reorthogonalization), baseado no formalismo de espaço de estados, representa o estado da arte na literatura em tarefas como a remoção do sinal residual da água. Além de realizar um estudo sistemático sobre o KBDM, este trabalho propõe o desenvolvimento de um novo método denominado LLC-KBDM (Line List Clustering Krylov Basis Diagonalization Method), que realiza a promediação das linhas espectrais obtidas através das soluções do KBDM em múltiplos truncamentos do mesmo sinal no espaço de parâmetros. O agrupamento automático dos picos é realizado através do uso de técnicas de aprendizado de máquina não supervisionado. Comparações utilizando sinais de 900 espectros simulados em 9 níveis de ruído foram realizadas entre os métodos LLC-KBDM, KBDM e HLSVD-PRO. O desvio padrão do resíduo medido a partir da diferença entre o sinal simulado sem ruído e o sinal estimado, bem como o número de picos corretamente estimados são utilizados como métricas de comparação. Os resultados mostram que o KBDM é ligeiramente superior ao HLSVD-PRO em todos os níveis de ruído considerados. Por outro lado, o LLC-KBDM se mostrou mais adequado para sinais os mais ruidosos, embora algumas instabilidades numéricas tenham sido observadas no caso contendo o maior nível de ruído. Para sinais in vivo, a tarefa da remoção do sinal residual da água é comparada entre os mesmos métodos. Um teste estatístico que utiliza a curtose e a obliquidade das distribuições para verificação da normalidade dos valores do resíduo na região de supressão foi aplicado. De acordo com o teste para o nível de significância α = 0.05, o sinal residual da água para 10 dos 14 espectros foram adequadamente suprimidos pelo LLC-KBDM; enquanto o KBDM e HLSVD-PRO conseguiram o mesmo feito para apenas 6 e 7 espectros, respectivamente. Uma implementação para o LLC-KBDM está disponível em: https://github.com/danilomendesdias/llckbdm.