TAIGA: uma abordagem para geração de dados de teste por meio de algoritmo genético para programas de processamento de imagens

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Rodrigues, Davi Silva
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/100/100131/tde-21122017-180309/
Resumo: As atividades de teste de software são de crescente importância devido à maciça presença de sistemas de informação em nosso cotidiano. Programas de Processamento de Imagens (PI) têm um domínio de entrada bastante complexo e, por essa razão, o teste tradicional realizado com esse tipo de programa, conduzido majoritariamente de forma manual, é uma tarefa de alto custo e sujeita a imperfeições. No teste tradicional, em geral, as imagens de entrada são construídas manualmente pelo testador ou selecionadas aleatoriamente de bases de imagens, muitas vezes dificultando a revelação de defeitos no software. A partir de um mapeamento sistemático da literatura realizado, foi identificada uma lacuna no que se refere à geração automatizada de dados de teste no domínio de imagens. Assim, o objetivo desta pesquisa é propor uma abordagem - denominada TAIGA (Test imAge generatIon by Genetic Algorithm) - para a geração de dados de teste para programas de PI por meio de algoritmo genético. Na abordagem proposta, operadores genéticos tradicionais (mutação e crossover) são adaptados para o domínio de imagens e a função fitness é substituída por uma avaliação de resultados provenientes de teste de mutação. A abordagem TAIGA foi validada por meio de experimentos com oito programas de PI distintos, nos quais observaram-se ganhos de até 38,61% em termos de mutation score em comparação ao teste tradicional. Ao automatizar a geração de dados de teste, espera-se conferir maior qualidade ao desenvolvimento de sistemas de PI e contribuir com a diminuição de custos com as atividades de teste de software neste domínio