Uma análise da divisão digital no Brasil através da aplicação da aprendizagem de redes bayesianas

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Barreto, Luis Fernando Britto Pereira de Mello
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/12/12139/tde-18022013-175034/
Resumo: Este trabalho buscou identificar como o Brasil está posicionado no contexto internacional da divisão digital assim como também os fatores que influenciam a divisão digital no país. Utilizando dados do cálculo do índice IDI disponibilizados pelo International Telecommunication Union (ITU) para 152 diferentes países obteve-se um modelo de clusterização a partir do aprendizado de Redes Bayesianas que resultou numa distribuição dos países em oito clusters. Este modelo foi alimentado com subconjuntos incompletos de indicadores correspondentes aos componentes do IDI para diversas subdivisões regionais brasileiras (regiões, estados, regiões metropolitanas/interiores dos estados e zonas rural/urbana), conforme a disponibilidade em diferentes fontes como a ANATEL, o IBGE e o CGI.BR. Desta forma foi possível inferir a que cluster mais provavelmente cada subdivisão regional deve pertencer. Enquanto a posição 64 no ranking do IDI coloca o Brasil em uma posição à frente de mais da metade dos 152 países incluídos, a concentração de diversas sub-regiões no sexto cluster coloca a maior parte do país apenas dois níveis acima dos países de pior classificação e a cinco níveis de distância dos melhores classificados. Já a análise dos fatores que influenciam a divisão digital no Brasil utilizou dados fornecidos pelo CGI.BR na obtenção de um modelo diferente de rede Augmented Naive Bayes para cada uma de quatro variáveis representativas de adoção tecnológica: uso da internet, uso do celular, adoção do comércio eletrônico e do internet banking. Como variáveis independentes, os modelos incluíram sexo, faixa etária, grau de instrução, situação de emprego, raça, classe social, zona rural/urbana, região e estado, sendo que as que apresentaram maior grau de influência foram a classe social e o grau de instrução. O conjunto de fatores selecionado demonstrou ser bastante preciso apenas na identificação da divisão digital em relação ao uso de internet, enquanto a utilização do celular, do comércio eletrônico e do internet banking não puderam ser totalmente explicadas, sugerindo a necessidade de mais estudos no sentido de identificar variáveis complementares que influenciem a adoção dessas tecnologias.