Uma análise Bayesiana para um grupo de experimentos completamente aleatorizados

Detalhes bibliográficos
Ano de defesa: 1996
Autor(a) principal: Luna, Joao Gil de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/11/11134/tde-20210104-171549/
Resumo: Em experimentação agronômica é muito freqüente a estruturação da análise estatística de um grupo de experimentos. Os motivos que levam a esta prática, quase sempre, estão associados ao desejo dos pesquisadores em obter conclusões mais gerais para os tratamentos envolvidos, bem como, acerca dos fatores ambientais (ano agrícola, estações do ano, épocas, regiões, tipos de solo, etc.) e da interação (tratamento) x (experimento). Este estudo apresenta uma estratégia bayesiana para analisar um grupo de experimentos completamente aleatorizados, onde o interesse do pesquisador é obter conclusões genéricas acerca do fator tratamento, considerado de efeito fixo, e num segundo plano, obter informações sobre os componentes da variância devidos ao fator experimento e à interação (tratamento) x (experimento), considerados de efeitos aleatórios. Nas análises individuais é adotado o modelo de médias de caselas, dado por yir = θi + eir, onde yir é a r-ésima observação obtida da unidade experimental que recebeu o tratamento i, θi é o efeito médio do i-ésimo tratamento e eir é o erro experimental associado à observação yir. Além disso, supõe-se que eir é distribuído como N(0, δ2). Na análise conjunta é adotado um modelo misto, isto é, yijr = θi + βj, + ϒij + eijr, (i = 1, ..., K; j = 1, ..., J; r = 1, ..., R), onde yijr é a r-ésima observação que recebeu o tratamento i no experimento j, βj é o efeito do j-ésimo experimento, ϒij é o efeito da interação do nível i do fator tratamento com o j-ésimo experimento, eijr é o erro experimental associado à observação yijr e θi como já definido. Ademais, supõe-se que eijr é distribuído como N(0, δ2e). Com base nas suposições, são construídas, de modo adequado, as funções de verossimilhança que combinadas com as distribuições a priori não-informativas para os parâmetros dos modelos geram-se densidades a posteriori, com a restrição de que os componentes da variância não assumem valores negativos. A partir da densidade conjunta a posteriori dos parâmetros do modelo (θ, δ2e, δ2g, δ2b), isto é, p(θ, δ2e, δ2g, δ2b|y), são determinadas densidades marginais para o vetor de parâmetros de locação θ = (θ1, ..., θK)', p(θ|y), e para combinações lineares destes, isto é, ϕ = Dθ =(ϕ1, ..., ϕ (K-1))', p(ϕ|y) de modo conveniente, para tornar possível a verificação de evidências de contrastes de interesse do pesquisador, bem como, estudar o comportamento da variável resposta em relação aos níveis do fator tratamento através de polinômios ortogonais. Também é determinada a densidade conjunta a posteriori dos componentes de variância, p(δ2e, δ2g, δ2b|y), bem como aproximações para as densidades marginais a posteriori destes componentes, p(δ2e|y), p(δ2g|y) e p(δ2b|y). Um grupo de três experimentos de adubação com micronutrientes cana-de-açúcar foi usado para ilustrar a metodologia Bayesiana e uma análise clássica foi também realizada para se comparar as metodologias.