Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Zonete, Maria Carolina Cunha |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/11/11150/tde-05082009-082221/
|
Resumo: |
O conhecimento do estoque florestal é uma importante ferramenta para que o planejamento de curto, médio e longo prazo possam ser realizados. Em cada talhão o estoque é obtido através do inventário florestal. O trabalho realizado teve como objetivo aplicar conceitos de geoestatística que se beneficiem da dependência espacial de certas variáveis para estimar o volume em pontos não amostrados. Para a realização deste estudo, foram utilizados métodos de interpolação, procedimento pelo qual se estimam valores de uma variável em área interior aos pontos de amostragem disponíveis, permitindo representar o comportamento de variáveis amostradas pontualmente e extrapolar valores da variável fora dos limites da área amostrada. Foram instaladas 34 parcelas para estimativa do inventário florestal e 36 parcelas de controle para comparar as diferenças entre o valor estimado e o valor efetivamente medido das variáveis: volume, área basal e altura média de um povoamento de clones de eucalipto em aproximadamente 205 ha, localizados em Mogi-Guaçu-SP. Além destas parcelas, foram mensuradas 24 parcelas em uma área vizinha aos talhões em estudo para compor cenários que pudessem melhorar a estimativa em regiões de borda. Com o auxílio do software Geomedia Professional®, três métodos de interpolação foram testados: Krigagem universal, Inverso da distância ponderada (IDW) e Spline. Para cada um dos métodos foram realizadas simulações com a inclusão de novas parcelas visando avaliar o comportamento da estimativa com o aumento da intensidade amostral. Nesse procedimento, foram criados 6 diferentes cenários com crescente números de parcelas: Am com 34 parcelas; G com 58 parcelas; G+5 com 63 parcelas; G+10 com 68 parcelas; G+15 com 73 parcelas e G+20.com 78 parcelas. A comparação entre o valor estimado e valor medido foi feita através dos erros em porcentagem para cada parcela. Todos os modelos testados apresentaram uma tendência, em média, a subestimar os valores. O erro mínimo encontrado para volume foi de -3,17% estimado pelo modelo Spline. Para altura média e área Basal os menores desvios foram de -1,7% e 0,82% igualmente estimados pelo modelo Spline. Na estimativa realizada através do modelo Krigagem, o melhor resultado foi de - 7,95%, -2,25% e -5,75% de desvio para área basal, altura e volume, respectivamente. Já o modelo IDW resultou num desvio de -7,48%, -1,29%, 7,53% para as mesmas variáveis. A análise dos resultados mostra que a estimativa por meio de interpolação utilizando modelos implícitos em software geoestatísticos produz alguns desvios significativos e o uso de modelos geoestatísticos ajustados ao conjunto de dados pode produzir estimativas melhores. |