Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Pinto, Jayme Augusto Duarte Pereira |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-22042014-190441/
|
Resumo: |
A distribuição bivariada de Marshall-Olkin é estendida, relaxando-se a hipótese de choques exponencialmente distribuídos e assumindo-se dependência entre os choques individuais. Abordagem semelhante é considerada para sua versão dual. Representação por meio de cópula, propriedades probabilísticas e de confiabilidade assim como resultados em valores extremos são então obtidos. A propriedade de falta de memória bivariada é estendida assumindo-se uma função de dependência sem memória. Uma nova classe de distribuições caracterizada por essa propriedade estendida é introduzida. Correspondentes interpretações geométricas, procedimentos de construção, representação estocástica, relação com cópula de sobrevivência e propriedades de confiabilidade são derivadas. |