Aprofundando as noções de dependência e envelhecimento em distribuições bivariadas de probabilidade

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Pinto, Jayme Augusto Duarte Pereira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-22042014-190441/
Resumo: A distribuição bivariada de Marshall-Olkin é estendida, relaxando-se a hipótese de choques exponencialmente distribuídos e assumindo-se dependência entre os choques individuais. Abordagem semelhante é considerada para sua versão dual. Representação por meio de cópula, propriedades probabilísticas e de confiabilidade assim como resultados em valores extremos são então obtidos. A propriedade de falta de memória bivariada é estendida assumindo-se uma função de dependência sem memória. Uma nova classe de distribuições caracterizada por essa propriedade estendida é introduzida. Correspondentes interpretações geométricas, procedimentos de construção, representação estocástica, relação com cópula de sobrevivência e propriedades de confiabilidade são derivadas.