Extração de conhecimento de laudos de radiologia torácica utilizando técnicas de processamento estatístico de linguagem natural.

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Zerbinatti, Leandro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3142/tde-16082010-173040/
Resumo: Este trabalho promove um estudo em informática em saúde no qual se analisam laudos de radiologia torácica através de métodos de processamento estatístico de linguagem natural com o intuito de subsidiar a interoperabilidade entre sistemas de saúde. Foram utilizados 2000 laudos de radiologia do tórax para a extração de conhecimento identificando-se as palavras, n-gramas e frases que os compõem. Foi calculado o índice de Zipf e verificou-se que poucas palavras compõem a maioria dos laudos e que a maioria das palavras não tem representatividade estatística A partir dos termos identificados foi realizada a tradução e a comparação da existência desses em um vocabulário médico padronizado com terminologia internacional, o SNOMEDCT. Os termos que tinham uma relação completa e direta com os termos traduzidos foram incorporados nos termos de referência juntamente com a classe à qual o termo pertence e seu identificador. Foram selecionados outros 200 laudos de radiologia de tórax para realizar o experimento de rotulação dos termos em relação à referência. A eficiência obtida neste estágio, que é o percentual de rotulação dos laudos, foi de 45,55%. A partir de então foram incorporados aos termos de referência, sob a classe de conceito de ligação, artigos, preposições e pronomes. É importante ressaltar que esses termos não adicionam conhecimento de saúde ao texto. A eficiência obtida foi de 73,23%, aumentando significativamente a eficiência obtida anteriormente. Finalizamos o trabalho com algumas formas de aplicação dos laudos rotulados para a interoperabilidade de sistemas, utilizando para isto ontologias, o HL7 CDA (Clinical Documents Architecture) e o modelo de arquétipos da Fundação OpenEHR.