Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Cação, Flávio Nakasato |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/3/3141/tde-10012024-092904/
|
Resumo: |
Recentemente, modelos compostos por apenas módulos neurais de Recuperação de Informação e Compreensão de Leitura de Máquina/Gerador de Texto baseados em modelos de linguagem pré-treinados alcançaram o estado da arte em vários conjuntos de dados desafiadores de processamento de linguagem natural. No entanto, ainda há espaço significativo para melhorias na capacidade de raciocínio desses sistemas, especialmente no domínio de perguntas e respostas complexas de domínio aberto (CODQA - Complex Open-Domain Question Answering). Neste projeto, propomos uma arquitetura que combina as principais características desses modelos dentro de uma configuração de Aprendizado por Reforço, com a capacidade extra de realizar múltiplos saltos entre documentos para responder às perguntas dos usuários. Um sistema com esta capacidade é fundamental para construir agentes conversacionais capazes de responder a perguntas complexas que requerem múltiplas consultas em uma base de conhecimento não-estruturada. Nossos sistemas alcançaram um F1-score máximo de 0.13 ± 0.3 no conjunto de teste, usando em média apenas 47% das passagens de texto totais disponíveis. |