Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
Araújo, Carlos Eduardo Di Giacomo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3148/tde-28032008-161354/
|
Resumo: |
Apesar de serem utilizados com sucesso em problemas de roteirização clássicos como o do caixeiro-viajante e o de roteirização de veículos com janelas de tempo, os algoritmos genéticos não apresentavam bons resultados nos problemas de roteirização de veículos sem janelas de tempo. Utilizando-se de uma tendência recente de hibridização de algoritmos genéticos, Prins (2004) elaborou um algoritmo para o problema de roteirização de veículos sem janelas de tempo, monoperíodo, e que obrigatoriamente atenda a todos os clientes cujos resultados, quando aplicado a instâncias de Christofides et al. (1979) e de Golden et al. (1998), são comparáveis aos melhores códigos elaborados com base na busca tabu. Diferentemente da maioria dos algoritmos genéticos apresentados para solução de problemas de roteirização de veículos, no método desenvolvido por Prins (2004) o cromossomo é composto apenas pelos pontos a serem atendidos, não contendo delimitadores de rotas. Estas são definidas a partir de um método de particionamento do cromossomo. Este trabalho implementa o algoritmo descrito por Prins (2004) e propõe a este melhorias em diversas de suas etapas, como inicialização, operação de crossover, operação de mutação, reinicialização e particionamento do cromossomo. As alterações implantadas são aplicadas às instâncias de Christofides et al. (1979) e comparadas com o algoritmo inicial em termos de qualidade de solução e tempo de processamento. Finalmente, é elaborado um algoritmo genético que contempla as alterações que obtiveram resultados positivos. |