Formas triangulares para sistemas não-lineares com duas entradas e controle de sistemas sem arrasto em SU(n) com aplicações em mecânica quântica.

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Silveira, Hector Bessa
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3139/tde-13082010-163547/
Resumo: A presente tese aborda dois problemas distintos e independentes: triangularização de sistemas não-lineares com duas entradas e controle de sistemas sem arrasto que evoluem no grupo especial unitário SU(n). Em relação ao primeiro, estabeleceu-se, através da generalização de resultados bem conhecidos, condições geométricas para que um sistema com duas entradas seja descrito por uma forma triangular específica após uma mudança de coordenadas e uma realimentação de estado estática regular. Para o segundo problema, desenvolveu-se uma estratégia de controle que força o estado do sistema a rastrear assintoticamente uma trajetória de referência periódica que passa por um estado objetivo arbitrário. O método de controle proposto utiliza os resultados de convergência de tipo- Lyapunov que foram estabelecidos pela presente pesquisa e que tiveram como inspiração uma versão periódica do princípio da invariância de LaSalle. Apresentou-se, ainda, os resultados de simulação obtidos com a aplicação da técnica de controle desenvolvida a um sistema quântico consistindo de duas partículas de spin-1/2, com o objetivo de gerar a porta lógica quântica C-NOT.