Classificação de maciços rochosos: uma abordagem por redes neurais

Detalhes bibliográficos
Ano de defesa: 2002
Autor(a) principal: Lins, Paulo Gustavo Cavalcante
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18132/tde-08032016-114433/
Resumo: Os sistemas de classificação maciços rochosos e as redes neurais artificiais possuem diversas similaridades. Existem características que estão presentes nos dois tipos de sistemas: bases de dados são usadas para o seu desenvolvimento; e pesos são parte da representação do conhecimento. Os principais sistemas de classificação geomecânicas (Sistema Q e RMR) podem ser escritos como representações neurais locais. Tais representações permitem uma melhor compreensão do processo de classificação e identificação de padrões realizado pelas classificações convencionais. Experimentos convencionais foram realizados com modelos de redes neurais não-supervisionados. Os modelos não supervisionados permitiriam uma melhor compreensão da distribuição dos dados no espaço de feições. Um modelo supervisionado para escavações subterrâneas em todo domínio do espaço de feições. Importantes relações entre características foram encontradas.