Detalhes bibliográficos
Ano de defesa: |
2002 |
Autor(a) principal: |
Lins, Paulo Gustavo Cavalcante |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/18/18132/tde-08032016-114433/
|
Resumo: |
Os sistemas de classificação maciços rochosos e as redes neurais artificiais possuem diversas similaridades. Existem características que estão presentes nos dois tipos de sistemas: bases de dados são usadas para o seu desenvolvimento; e pesos são parte da representação do conhecimento. Os principais sistemas de classificação geomecânicas (Sistema Q e RMR) podem ser escritos como representações neurais locais. Tais representações permitem uma melhor compreensão do processo de classificação e identificação de padrões realizado pelas classificações convencionais. Experimentos convencionais foram realizados com modelos de redes neurais não-supervisionados. Os modelos não supervisionados permitiriam uma melhor compreensão da distribuição dos dados no espaço de feições. Um modelo supervisionado para escavações subterrâneas em todo domínio do espaço de feições. Importantes relações entre características foram encontradas. |