Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Kroetz, Henrique Machado |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/18/18134/tde-08042015-162956/
|
Resumo: |
A aplicação de simulações numéricas em problemas de confiabilidade estrutural costuma estar associada a grandes custos computacionais, dada a pequena probabilidade de falha inerente às estruturas. Ainda que diversos casos possam ser endereçados através de técnicas de redução da variância das amostras, a solução de problemas envolvendo grande número de graus de liberdade, respostas dinâmicas, não lineares e problemas de otimização na presença de incertezas são comumente ainda inviáveis de se resolver por esta abordagem. Tais problemas, porém, podem ser resolvidos através de representações analíticas que aproximam a resposta que seria obtida com a utilização de modelos computacionais mais complexos, chamadas chamados meta-modelos. O presente trabalho trata da compilação, assimilação, programação em computador e comparação de técnicas modernas de meta-modelagem no contexto da confiabilidade estrutural, utilizando representações construídas a partir de redes neurais artificiais, expansões em polinômios de caos e através de krigagem. Estas técnicas foram implementadas no programa computacional StRAnD - Structural Reliability Analysis and Design, desenvolvido junto ao Departamento de Engenharia de Estruturas, USP, resultando assim em um benefício permanente para a análise de confiabilidade estrutural junto à Universidade de São Paulo. |