Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Taketomi, Douglas Felipe Queiroz |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/55/55136/tde-15062023-125035/
|
Resumo: |
Este trabalho é uma introdução para o estudo de equações diofantinas e frações contínuas, equações que foram trabalhadas pelo matemático grego Diofanto de Alexandria, considerado o pai da Álgebra. Antes de estudar equações diofantinas, serão vistos alguns fundamentos relacionados à Teoria dos Números, incluindo propriedades, teoremas e demonstrações sobre divisibilidade, divisão euclidiana, máximo divisor comum, congruências e o algoritmo de Euclides. Em seguida, será estudado equações diofantinas lineares com duas, três e n incógnitas.E por fim, abordamos frações contínuas, onde será mostrada a relação fundamental entre números racionais e números reais, e como números racionais e irracionais podem ser representados como frações contínuas, com exemplos do número \"π\" e o número de ouro. |