STARTABLE - Mapeamento multidimensional para NoSQL e sistema Big Data.

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Ferreira, Leandro Mendes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/3/3141/tde-15022024-091236/
Resumo: Banco de dados analíticas como data warehouse permitem consultas a informações agregadas e sumarizadas, sendo voltadas para as necessidades do negócio e tomadas de decisão. Tais bancos são construídos a partir de modelos multidimensionais, representados por modelos conceituais como o de Entidade- Relacionamento e facilmente mapeado para um modelo de implementação, como o Relacional, com bom desempenho para as operações de consulta. Por outro lado, as atuais necessidades demandam por maior velocidade de processamento com enormes e cada vez maiores volumes de dados. Neste contexto, sistemas distribuídos de persistência de dados como banco de dados NoSQL e ferramentas de Big Data são alternativas importantes para desenvolvimento de bases analíticas. Entretanto, ainda é um desafio encontrar uma forma de mapeamento de modelos multidimensionais que se adeque a diferentes tipos de NoSQL e outros sistemas de persistência não relacional e que seja flexível para atender a diferentes tipos ou necessidades de negócio. Desta forma, essa pesquisa propõe a Startable, uma forma de mapeamento para NoSQL orientado a documentos, NoSQL orientado a colunas, e para um sistema de Big Data, que apresenta desempenho aceitável de leitura e que pode ser adotado por diferentes aplicações analíticas com diferentes necessidades de negócio. Para validar a proposta, utilizou-se um benchmark padrão, cujos testes de desempenho mostraram resultados superiores quando comparados com tradicionais implementações de sistemas analíticos com base em modelo multidimensional.