Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Ferreira, Leandro Mendes |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/3/3141/tde-15022024-091236/
|
Resumo: |
Banco de dados analíticas como data warehouse permitem consultas a informações agregadas e sumarizadas, sendo voltadas para as necessidades do negócio e tomadas de decisão. Tais bancos são construídos a partir de modelos multidimensionais, representados por modelos conceituais como o de Entidade- Relacionamento e facilmente mapeado para um modelo de implementação, como o Relacional, com bom desempenho para as operações de consulta. Por outro lado, as atuais necessidades demandam por maior velocidade de processamento com enormes e cada vez maiores volumes de dados. Neste contexto, sistemas distribuídos de persistência de dados como banco de dados NoSQL e ferramentas de Big Data são alternativas importantes para desenvolvimento de bases analíticas. Entretanto, ainda é um desafio encontrar uma forma de mapeamento de modelos multidimensionais que se adeque a diferentes tipos de NoSQL e outros sistemas de persistência não relacional e que seja flexível para atender a diferentes tipos ou necessidades de negócio. Desta forma, essa pesquisa propõe a Startable, uma forma de mapeamento para NoSQL orientado a documentos, NoSQL orientado a colunas, e para um sistema de Big Data, que apresenta desempenho aceitável de leitura e que pode ser adotado por diferentes aplicações analíticas com diferentes necessidades de negócio. Para validar a proposta, utilizou-se um benchmark padrão, cujos testes de desempenho mostraram resultados superiores quando comparados com tradicionais implementações de sistemas analíticos com base em modelo multidimensional. |