Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Figueiredo, Rafael Alves |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-30112016-160821/
|
Resumo: |
Aplicações industriais envolvendo escoamentos multifásicos são inúmeras, sendo que, o aprimoramento de alguns desses processos pode resultar em um grande salto tecnológico com significativo impacto econômico. O estudo numérico dessas aplicações é imprescindível, pois fornece informações precisas e mais detalhadas do que a realização de testes experimentais. Um grande desafio é o estudo numérico de escoamentos viscoelásticos multifásicos envolvendo altas taxa de elasticidade, devido às instabilidades causadas por altas tensões elásticas, grandes deformações, e até mudanças topológicas na interface. Assim, a investigação numérica desse tipo de problema exige uma formulação precisa e robusta. No presente trabalho, um novo resolvedor de escoamentos bifásicos envolvendo fluidos complexos é apresentado, com particular interesse em escoamentos com altas taxas de elasticidade. A formulação proposta é baseada no método Volume-of-fluid (VOF) para representação da interface e no algoritmo Continuum Surface Force (CSF) para o balanço de forças na interface. A curvatura e advecção da interface são calculados via métodos geométricos para garantir a precisão dos resultados. Métodos de estabilização são utilizados quando números críticos de Weissenberg (Wi) são encontrados, devido ao famoso problema do alto número de Weissenberg (HWNP). O método da projeção, combinado com um método implícito para solução da equação da quantidade de movimento, são discretizados por um esquema de diferenças finitas em uma malha deslocada. Problemas de benchmarks foram resolvidos para acessar a precisão numérica da formulação em diferentes níveis de complexidade física, tal como representação e advecção da interface, influência das forças interfaciais, e características reológicas do fluido. A fim de demonstrar a capacidade do novo resolvedor, dois problemas bifásicos transientes, envolvendo fluidos viscoelásticos, foram resolvidos: o efeito de Weissenberg e o reômetro extensional (CaBER). O efeito de Weissenberg ou rod-climbing effect consiste em um bastão que gira dentro de um recipiente com fluido viscoelástico e, devido às forças elásticas, o fluido escala o bastão. Os resultados foram comparados com dados teóricos, numéricos e experimentais, encontrados na literatura para pequenas velocidades angulares. Além disso, resultados obtidos com altas velocidades angulares (alta elasticidade) são apresentados com o modelo Oldroyd-B, em que escaladas muito elevadas foram observadas. Valores críticos da velocidade angular foram identificados, e para valores acima foi observada a ocorrência de instabilidades elásticas, originadas pela combinação de tensões elásticas, curvatura interfacial, e escoamentos secundários. Até onde sabemos, numericamente, essas instabilidades nunca foram capturadas antes. O CaBER consiste no comportamento e colapso de um filamento de fluido viscoelástico, formado entre duas placas paralelas devido às forças capilares. Esse experimento envolve consideráveis dificuldades, dentre as quais podemos destacar a grande influência das forças capilares e a diferença de escalas de comprimento no escoamento. Em grande parte dos resultados encontrados na literatura, o CaBER é resolvido por modelos simplificados em uma dimensão. Resultados obtidos foram comparados com tais resultados da literatura e com soluções teóricas, apresentando admirável precisão. |