Mineração de dados textuais para a classificação da atividade econômica principal de empresas: uma proposta de aplicação em pesquisas econômicas

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Silva, Ana Gabriela Faria da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45133/tde-04072022-160436/
Resumo: O papel das estatísticas é produzir informações que busquem retratar a realidade. Para que isso seja possível, se faz necessário o estabelecimento de padrões. As estatísticas econômicas no Brasil, seguindo diretrizes internacionais, adotam a Classificação Nacional de Atividades Econômicas (CNAE) para caracterizar as atividades desenvolvidas pelas empresas. A CNAE possui uma estrutura hierárquica onde quanto maior o número de dígitos mais específica é a atividade descrita. Este trabalho objetiva avaliar o uso do aprendizado supervisionado, no âmbito da mineração de dados textuais, para a obtenção da CNAE que corresponde à atividade econômica principal das empresas. Para tanto, são utilizados textos como variáveis preditoras, obtidos via web scraping, de páginas da web e o oriundo da própria URL da companhia. Tanto a URL quanto a variável resposta, a CNAE, têm como origem as Pesquisas Estruturais por Empresa, do Instituto Brasileiro de Geografia e Estatística (IBGE). Por conta da estrutura hierárquica da classificação são testadas duas abordagens para o ajuste dos modelos. A primeira, denominada classificação plana, tem por objetivo obter diretamente a classe mais específica. Já a segunda, enquadrada na categoria de classificação hierárquica, consiste na construção de diversos classificadores locais independentes para cada nível da hierarquia de classes. Nos dois casos, dentre os algoritmos testados, a Regressão Logística apresentou o melhor desempenho, se mostrando apta para extrair padrões capazes de identificar a classificação. As duas abordagens forneceram resultados diferentes por classe, tendo o classificador plano exibido um comportamento mais adequado em categorias que tendiam a ser mais difíceis de caracterizar nos níveis superiores, ou seja, naqueles que representam atividades menos específicas. Apesar disso, nas duas abordagens o resultado ao se considerar todas as classes foi próximo.