O método da função Lagrangiana barreira modificada/penalidade

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Pereira, Aguinaldo Aparecido
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
FPO
OPF
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18154/tde-14032008-155744/
Resumo: Neste trabalho propomos uma abordagem que utiliza o método de barreira modificada/penalidade para a resolução de problemas restritos gerais de otimização. Para isso, foram obtidos dados teóricos, a partir de um levantamento bibliográfico, que explicitaram os métodos primal-dual barreira logarítmica e método de barreira modificada. Nesta abordagem, as restrições de desigualdade canalizadas são tratadas pela função barreira de Frisch modificada, ou por uma extrapolação quadrática e as restrições de igualdade do problema através da função Lagrangiana. A implementação consiste num duplo estágio de aproximação: um ciclo externo, onde o problema restrito é convertido em um problema irrestrito, usando a função Lagrangiana barreira modificada/penalidade; e um ciclo interno, onde o método de Newton é utilizado para a atualização das variáveis primais e duais. É apresentada também uma função barreira clássica extrapolada para a inicialização dos multiplicadores de Lagrange. A eficiência do método foi verificada utilizando um problema teste e em problemas de fluxo de potência ótimo (FPO).