Topics in gauge/gravity dualities

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Romero, Jose Renato Sanchez
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-13012015-121829/
Resumo: This thesis consists in a self-contained study of gauge/gravity dualities in the line of the Klebanov-Witten model. Here we explore first the known Maldacena duality that relates N=4 SYM theory in four dimensions to type IIB supergravity on AdS_5×S^5 in reasonable detail, after some necessary preliminaries on supersymmetric gauge theories, where we display in detail the supersymmetry algebra and representations for N 1 supersymmetry. There we also construct the so-called superfields that will be helpful to write invariant lagrangians for gauge theoriesmreadily, and then useful to construct the gauge theory side of the Klebanov-Witten model. In the original AdS/CFT correspondence and its phenomenologically interesting extensions, Dp-branes as solutions of supergravity and nonperturbative objects in string theory where gauge theory lives are crucial. So, to preserve the self-contained nature of this work, we include a brief review of superstring theory addressed to understand the need to include this higher-dimensional objects by T-duality and, at low-energy limit of the string theory, as solutions of the Einstein equations. The first climax of this work occurs when we use all we learned to establish the Maldacena conjecture, N=4 SU(Nc) SYM theory we study in the supersymmetry chapter, living on the four-dimensional worldvolume of a stack of Nc D3-branes in a flat-space, corresponds exactly to type IIB supergravity on AdS_5×S^5 .In order to prove it, we match symmetries and operators with states in both sides. But actually this corresponds to the weak form of the correspondence, because it is not possible to handle neither string theory or gauge theory at strong coupling. The focus and main motive to have to learn the first hundred of pages here will be to extend the dual gauge theory we studied in AdS/CFT towards more realistic gauge theories as duals of some supergravity theory. The Klebanov-Witten model, consists in replacing the five-sphere in the gravity background of type IIB for a more interesting Einstein manifold X5 , a coset space called T^1,1 .The resulting dual gauge theory is expected to be less supersymmetric, and it is indeed N = 1 superconformal field theory with matter content in the bifundamental representation of the gauge group SU(N)×SU(N), and a quartic superpotential that exhibits SU(2)×SU(2)×U(1) global symmetry, which is precisely the symmetry of the coset space in the gravity side. This is not the end of the story, the Klebanov-Witten model extended the Maldacena correspondence and found as a dual gauge theory a less supersymmetric but still conformal theory. Breaking of the conformal theory, proposed by Klebanov, Nekrasov and Tseytlin, is achieved by introducing fractional M D3-branes in addition to the N regular D3-branes. The resulting theory is an SU(N+M)×SU(N) gauge theory with N = 1 supersymmetry, no longer conformal and then a little more interesting as a part of the crusade to find a QCD-like theory. This is still not the end, the last model suffers from a singularity in the deep IR, rendering the gravitational description invalid in that regime. It was conjectured that the strong dynamics of the gauge theory should somehow resolve this problem. Klebanov, again, and Strassler showed that this conjecture was correct, and argue that the RG flow is in fact an infinite series of Seiberg duality transformations- a cascade - in which the number of colors repeatedly drops from N NM , so the gaugegroup changes from SU(N+M)×SU(N) to SU(NM) ×SU(N). This process can be repeated until the IR limit where the gauge group simply becomes SU(M). So, at the end we get a N=1 SU(M) gauge theory, a QCD-like theory. We say that the standard model itself may lie at the base of a duality cascade.