Detalhes bibliográficos
Ano de defesa: |
2000 |
Autor(a) principal: |
Peres, Antonieta D'Alcantara de Queiroz |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-122300/
|
Resumo: |
Neste trabalho, apresentamos um modelo de espaço de estados para dados longitudinais, no qual o processo latente é um processo de Markov de ordem `L > OU =1¦. Assumimos que, dado o processo latente, a distribuição condicional do processo observado depende do valor presente e de 'K > OU = 0' valores passados do processo latente e tanto o processo observado quanto o processo latente têm distribuição na família Tweedie dos modelos de dispersão. O modelo é log-linear em um conjunto de covariáveis que podem variar no tempo e a estimação dos parâmetros de regressão é feita por meio de equações de estimação de Kalman, resolvidas por um algoritmo de escores de Newton. Parâmetros de dispersão são estimados por meio de estimadores de Pearson corrigidos. O modelo admite ainda uma terceira classe de parâmetros, os parâmetros retrospectivos, que definem a ordem do processo latente. Para estimação destes parâmetros retrospectivos, propomos um procedimento inspirado na função de verossimilhança perfilada. Mostramos alguns resultados de simulação e uma aplicação do modelo a um conjunto de dados reais |