Modelo de espaço de estados com efeitos retrospectivos para dados longitudinais multivariados

Detalhes bibliográficos
Ano de defesa: 2000
Autor(a) principal: Peres, Antonieta D'Alcantara de Queiroz
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-122300/
Resumo: Neste trabalho, apresentamos um modelo de espaço de estados para dados longitudinais, no qual o processo latente é um processo de Markov de ordem `L > OU =1¦. Assumimos que, dado o processo latente, a distribuição condicional do processo observado depende do valor presente e de 'K > OU = 0' valores passados do processo latente e tanto o processo observado quanto o processo latente têm distribuição na família Tweedie dos modelos de dispersão. O modelo é log-linear em um conjunto de covariáveis que podem variar no tempo e a estimação dos parâmetros de regressão é feita por meio de equações de estimação de Kalman, resolvidas por um algoritmo de escores de Newton. Parâmetros de dispersão são estimados por meio de estimadores de Pearson corrigidos. O modelo admite ainda uma terceira classe de parâmetros, os parâmetros retrospectivos, que definem a ordem do processo latente. Para estimação destes parâmetros retrospectivos, propomos um procedimento inspirado na função de verossimilhança perfilada. Mostramos alguns resultados de simulação e uma aplicação do modelo a um conjunto de dados reais