Seleção Bayesiana de variáveis para modelos de mistura de regressão logística com variáveis latentes Pólya-Gamma

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Bogoni, Mariella Ananias
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/104/104131/tde-10032022-163610/
Resumo: Neste trabalho, métodos Bayesianos para estimação e seleção de variáveis em um modelo de mistura de regressão logística são apresentados. Com o objetivo de simplificar a inferência Bayesiana e ganhar eficiência computacional, a abordagem de aumento de dados com variáveis latentes Pólya-Gama é estendida para modelos de mistura de regressão logística. Através dela, o algoritmo amostrador de Gibbs é aplicado para a estimação do modelo completo, com a estimação do número de componentes da mistura sendo feita através de critérios Bayesianos de seleção de modelos. Para a seleção de variáveis, duas distribuições a priori para os coeficientes de regressão são investigadas, adicionando um segundo conjunto de variáveis latentes para indicar a presença e ausência das variáveis preditoras em cada componente da mistura. De modo análogo ao modelo completo, o algoritmo amostrador de Gibbs é aplicado no modelo com a seleção de variáveis e a conjugação obtida para a distribuição dos coeficientes de regressão, com a inclusão das variáveis Pólya-Gama, nos permite calcular analiticamente a verossimilhança marginal e ganhar eficiência computacional no processo de seleção de variáveis. Para analisar a performance dos métodos, as metodologias apresentadas são aplicadas em dados simulados e reais.