Estratégias de microaeração para desamonificação de lixiviados de aterros sanitários em reator único.

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Augusto, Matheus Ribeiro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/3/3147/tde-03052021-115016/
Resumo: A desamonificação consiste na combinação dos processos autotróficos de nitritação e anammox (anaerobic ammonium oxidation), para remoção de nitrogênio de água residuárias. Pode ser realizada em um único estágio, adotando-se estratégias adequadas de microaeração e/ou formação de biofilme, que possibilitam a criação de zonas aeróbias e anóxicas no sistema. Apresenta importantes vantagens econômicas em relação aos processos convencionais de nitrificação e desnitrificação heterotrófica, especialmente no tratamento de águas residuárias com baixa relação C/N, como os lixiviados de aterros sanitários. Neste contexto, o objetivo do presente trabalho foi estudar a influência de duas diferentes alternativas de microaeração na aplicação do processo de desamonificação em um único estágio e no desempenho no tratamento de lixiviados de aterros sanitários. Foram operados, em paralelo e submetidos às mesmas condições operacionais, dois reatores contínuos: reator com biomassa imobilizada em espuma de poliuretano (R1) e reator com biomassa imobilizada em membrana tubular de silicone (R2). A difusão de oxigênio no reator R1 foi realizada de forma intermitente através de um difusor de bolha fina, enquanto no reator R2 foi realizada de forma contínua através de uma membrana tubular de silicone, que não gera bolhas. A operação foi dividida em duas etapas: na etapa 1, a alimentação foi realizada com água residuária sintética e, na etapa 2, com lixiviados de aterros sanitários. O processo anammox foi observado nos dois reatores logo no início da etapa 1, após 48 dias, mas alcançou estabilidade somente após 90 dias no reator R1 e após 83 dias no reator R2. Na fase I da etapa 1 (N-NH4 +afluente = 50 mg N.L-1) os reatores R1 e R2 apresentaram eficiência média de remoção de nitrogênio total (NT) de 70 ± 5 e 79 ± 3 %, respectivamente. Estas mesmas eficiências foram de 60 ± 4 e 61 ± 5 % para a fase II (NNH4+ afluente = 100 mg N.L-1 ), 76 ± 2 e 69 ± 3 % para a fase III-1 (N-NH4 + afluente = 250 mg N.L-1), e 22 ± 18 e 40 ± 2 % para a fase IV (N-NH4+ afluente = 500 mg N.L-1). Na fase IV a biomassa anammox do reator R1 sofreu inibição. Procedeu-se à fase de recuperação do processo do desamonificação (fase III-2, com N-NH4+ afluente = 250 mg N.L-1), e a eficiência média de remoção de NT, para os reatores R1 e R2, foi retomada para 74 ± 5 e 70 ± 5 %, respectivamente. Após a fase de restabelecimento, as eficiências de remoção de NT, para os reatores R1 e R2, foram de 77 ± 3 e 70 ± 4 % para a fase V (N-NH4+ afluente = 400 mg N.L-1), e 73 ± 3 e 62 ± 3 % para a fase VI (N-NH4+ afluente = 500 mg N.L-1). Os resultados obtidos na etapa 1 indicaram o pleno estabelecimento do processo de desamonificação. A produção de NO3- e o consumo de alcalinidade foram muito semelhantes aos valores estequiométricos. Além disso, as análises microbiológicas de FISH indicaram a coexistência das bactérias nitritantes e anammox nos dois reatores. O reator R1 apresentou capacidade de remoção de NT superior, especialmente nas fases finais da etapa 1. No entanto, o reator R2 demonstrou maior estabilidade e resistência à inibição, graças ao seu inovador sistema de microaeração. Na etapa 2, os sistemas foram alimentados com lixiviados de aterro sanitários. Na fase I, utilizou-se o lixiviado do aterro sanitário 1, não diluído. Nas fases II e III, utilizaram-se 10 e 15 % do lixiviado do aterro sanitário 2, respectivamente. Na fase I da etapa 2 (NTKafluente = 160 ± 7 mg N.L-1 ) os reatores R1 e R2 apresentaram eficiência média de remoção de NT de 60 ± 8 e 62 ± 2%, respectivamente. Estas mesmas eficiências foram de 57 ± 6 e 61 ± 4 % para a fase II (NTKafluente = 189 ± 9 mg N.L-1), e 63 ± 16 e 63 ± 8 % para a fase III (NTKafluente = 258 ± 41 mg N.L-1). A produção de NO3-, o consumo de alcalinidade, a remoção de matéria orgânica e as análises microbiológicas de FISH indicaram uma possível participação das bactérias desnitrificantes heterotróficas na remoção de nitrogênio. Os dois reatores apresentaram elevadas capacidades de remoção de NT, revelando o potencial das configurações e alternativas de microaeração estudadas.